

From: [REDACTED]
To: [Wylfa Newydd](#)
Subject: Wylfa Project (EN10007)Reg:20010764. FAO:Kay Sully, Case Manager.
Date: 19 November 2018 16:48:06

Dear Madam,

I have made reference to the above in August and October. Unfortunately, I have made a serious error in my calculations, for which I sincerely apologise and wish to correct. Can the following be passed to the Lead Member and other Panel Members please.

Dear Frances Fernandes and other Panel Members,

In my communications on the above subject, I used, in calculating the daily flow of cooling water from the proposed Nuclear Power station, Horizons figure of 130 Cubic Metres Per Second. In converting this to 'Gallons Per Day', I inadvertently put the decimal point in the Wrong Place. I put 25 Billion when it should be 2.5 Billion. I had a 'Very Senior Moment' Also, whilst calculating this against the capacity of the Local Reservoir, again this should be 1.5 and NOT15!. Whilst this does NOT ALTER the Comments or Recommendations made, I am ashamed of the error and must seek forgiveness and apologise for any inconvenience caused.

Yours faithfully,

Michael Cominetti.

This email has been scanned by the Symantec Email Security.cloud service.
For more information please visit <http://www.symanteccloud.com>

From: [REDACTED]
To: Wylfa_Newydd@naturalresourceswales.gov.uk
Cc:
Subject: Horizon Nuclear Power. Main Consultation Document (Stage 2).
Date: 27 November 2018 17:08:44

FAO: Frances Fernandes, Lead Member of the Panel of Examining Members and other Panel Members.

Dear Madam,

I am concious that written representations are required by 4th December. I have been searching through the above document and find that Horizon Nuclear are concerned that in the event of unforseen clogging of filter screens, cooling water flow could be significantly reduced (please see highlighted paragraph from their report attached) that they are exploring 'a reserve ultimate heat sink' They go on to say that the 'Chosen solution would be based around Low Profile, Forced Draught, Wet Cell Cooling Towers, arranged in Two Sets (one for each Unit)" they give dimentions and provide an indicative image - again attached.

My arguments have always been that this type of unit or units Could Be Installed In Place of a Direct or Once Through System which would reduce or eliminate entirely the problem of fish and other aquatic organism death and injury. If this can be DONE as a RESERVE, Why Not as a PERMANENT ARRANGEMENT. Again, I URGE that IF you are mindfull to recommend to the Secretary of State to Grant Permission that a Condition be That INDIRECT COOLING be INSTALLED. Thank you,

Your Faithfully,
Michael Cominetti.

This email has been scanned by the Symantec Email Security.cloud service.
For more information please visit <http://www.symanteccloud.com>

have not been fully determined and the options currently being considered by Horizon are set out later in this section (see 'options still under consideration').

- 6.162 Dredging would be required to create additional depth for the safe delivery of CW to the intakes. Preliminary estimates suggest that approximately 360,000m³ of material would be dredged to form an approach channel, along with an additional 210,000m³ excavated for the intake area itself. In addition, two breakwaters are required to provide a calm water environment for the CWS intake structure, to protect it from storm damage, reduce wave heights, and to provide a constant and low velocity flow of water to the Power Station.
- 6.163 In addition, there would be two smaller and separate seawater cooling water systems, the turbine building service water system and the reactor building service water system, which would extract seawater through separate inlets in Porth-y-pistyll. These systems would each use seawater flowing through heat exchangers to remove heat from closed-loop circuits, which cool turbine building components and the reactor building components (these systems are the turbine building cooling water system and the reactor building cooling water system, respectively, described earlier in this chapter). The seawater would pass through the heat exchangers in these two systems and then join the main CW outfall.

Reserve ultimate heat sink

- 6.164 The CWS removes the heat generated within equipment or rooms using CW abstracted from and later discharged to the Irish Sea. The Irish Sea is therefore the ultimate heat sink that provides sufficient CW flow to achieve essential reactor cooling.
- 6.165 Should CW flow become impaired to the extent that essential reactor cooling could not be achieved by abstraction of water from the Irish Sea, for example if the CWS intake screens were to become inundated with debris to the extent that flow through them was significantly reduced, a reserve ultimate heat sink would be required. Horizon is exploring the safety requirements and once these have been defined, a solution will be developed. It is currently assumed that a reserve ultimate heat sink is required, and that the chosen solution would be based around low profile, forced draft, wet cell cooling towers, arranged in two sets (one for each Unit). A worst case assumption for the size of one cooling tower installation would be 70m by 12m and approximately 7m tall. Figure 6.11 provides an indicative image of wet cell cooling towers.

Figure 6.11 Indicative image of wet cell cooling towers

Image used with permission from SPX Cooling Technologies UK Ltd. for educational and informational purposes only. (c) 2015 SPX Cooling Technologies UK Ltd. All Rights Reserved